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LETTER TO THE EDITOR 

Magnetisations from finite-size scaling 

C J Hamer 
Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, PO Box 4, Canberra ACT 2600, Australia 

Received 14 September 1982 

Abstract. A method of obtaining the spontaneous magnetisation from finite-lattice matrix 
elements of the magnetic field operator, due to Yang and Uzelac, is discussed. The method 
is demonstrated for the case of the king model in (1+1) dimensions, and is shown to 
provide smooth and rapidly convergent finite-lattice sequences. Applied to the case of 
the three-state Potts (Z,) model in (1 + 1) dimensions, the method yields an estimate 
p = 0.111 09i0.000 05 for the critical exponent. This confirms Alexander’s conjecture 
of universality with the hard hexagon model. 

The spontaneous magnetisation of a spin model in zero magnetic field is difficult to 
calculate by finite-size scaling methods (Fisher 1971, Fisher and Barber 1972, Barber 
1982). The problem is that on a finite lattice the spontaneous magnetisation always 
vanishes: the ground state is rotationally symmetric in zero magnetic field. It is only 
in the bulk limit that spontaneous symmetry breaking occurs. 

One may try to proceed by a double limiting process: that is, by calculating the 
magnetisation in non-zero field h, then taking the lattice size to infinity (bulk limit), 
and then taking the limit h + 0. This process will, in principle, yield the correct 
spontaneous magnetisation. But the double limit is a delicate one, since the conver- 
gence is non-uniform, and one must be careful to take the bulk limit and the zero-field 
limit in the order specified. In practice, one cannot expect to achieve very good 
accuracy by such a procedure (Hamer 1981). 

The solution to this problem was pointed out long ago by Yang (1952), and has 
been rediscovered recently by Uzelac (1980) in the context of finite-size scaling theory 
(or the ‘phenomenological renormalisation group’, cf Nightingale (1 977)). Consider, 
for example, the quantum field theory version of the ZD Ising model.? The quantum 
Hamiltonian for this model, in a low-temperature representation, is (Fradkin and 
Susskind 1978) 

where the index m labels sites on a one-dimensional spatial lattice, and the cri(m) are 
Pauli matrices acting on a two-state spin variable at each site. The coupling A ‘  acts 
as a temperature variable, and h is the magnetic field. The two leading (lowest-energy) 
eigenvectors of this Hamiltonian may be denoted 11 +) and 12 -), respectively, where 

t The following argument extends immediately to the ordinary Euclidean framework of statistical mechanics 
if one everywhere replaces ‘quantum Hamiltonian’ by (minus the) ‘logarithm of the transfer matrix’ (Fradkin 
and Susskind 1978, Kogut 1979). 

0305-4470/82/120675 + 09$02.00 @ 1982 The Institute of Physics L675 



L676 Letter to the Editor 

the signs refer to the symmetry of each state under a reversal of all spins. For A ‘  less 
than the critical temperature A = 1, and for h = 0, these two states become degenerate 
in the bulk limit. 

Now consider the effect of a very small magnetic field h on these two states. Let 
the matrix element of the magnetic field term between them be 

I >  ( Ims l  M 
a =  2- c f.73(m) 1 +  . 

Then the effect of this small perturbation is to mix the two degenerate states, and 
thus to produce a spontaneous breakdown of the spin reversal symmetry. The new 
ground-state energy, to leading order in h, is the minimum eigenvalue of the 2 x 2  
matrix 

where Eo is the unperturbed eigenvalue; hence the spontaneous magnetisation (Hamer 
and Kogut 1980) is 

The last equality follows from translational invariance of the ground state. A more 
rigorous demonstration of this result may be found in Schultz et a1 (1964). 

Now the relation (4) depends on the exact degeneracy of the states 11 +) and 12-), 
and is therefore only true in the bulk limit M + 03. On a finite lattice, the quantity 
dEo/dh is zero at h = 0, as we have seen, and is consequently useless for estimating 
the spontaneous magnetisation. But the matrix element a / M  is not zero at h = 0, and 
in fact provides a smooth sequence converging to the bulk spontaneous magnetisation 
as the lattice size M + 03. Our problem is therefore solved. 

To demonstrate this, we apply the idea to the Z2 (Ising) and Z3 (three-state Potts) 
models in (1 + 1) dimensions. The quantum Hamiltonian for the Z, model is (Elitzur 
et a1 1979) 

M 

i=l 
H(A, h ) = - [ ~ 0 ~ ( 2 7 ~ L i / p )  + ;A (R :R i-1 + R ;R 7- 1 ) - $h (R + R :)I, 
where we apply periodic conditions so that R h + i  = R’. In the high-temperature 
representation, which we shall employ here, the operators Li have as their spectrum 
Z,, the integers modulo p ,  and R’ are raising and lowering operators for the ‘spin’ 
Li at site i. The parameter A is an inverse temperature, and h is the magnetic field. 
For the case p = 2, the Hamiltonian (5) is equivalent to (1). 

The Z, models are self-dual: the Hamiltonian (5) satisfies the relation (Elitzur et 
a1 1979) 

H ( A )  = AH(l/A). (6) 
Hence in the cases where there is a single second-order phase transition (i.e. cases 
p = 2, 3,4), the critical point must lie at A,  = 1. 

The generalisation of the argument given above for the special case of the Ising 
model is immediate. For temperatures below the critical point, the Z, model has p 
degenerate ground states at h = 0; and the 2 x 2 matrix (3) is replaced by a cyclic, 
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tridiagonal, p x p  matrix. It is easily shown that the finite-lattice ‘magnetisation’ is 
equal to the largest eigenvalue of the matrix {(ill? + R T l j ) } ,  where the states {li)} are 
the p ground states. 

In the high-temperature representation (5 ) ,  the spectrum at h = 0 breaks up into 
p disjoint sectors, each characterised by an eigenvalue of Li) mod p .  The ground 
state in each of these sectors becomes one of the p degenerate ground states in the 
bulk limit, at low temperatures. 

The computation then proceeds via standard methods (Hamer and Barber 1980, 
1981a, b). For each lattice size M, a matrix Hamiltonian is generated using the 
high-temperature spin eigenstates as a basis. At each coupling value A, the ground 
state of this Hamiltonian in each of the p sectors can then be calculated using an 
iterative method. We used a conjugate gradient method for this purpose, rather than 
the Lanczos method, in the belief that the former gives the more reliable estimates 
of the eigenvectors. Having found the p ground-state eigenvectors, it is easy to 
compute the matrix elements of the magnetic field operator between them, and hence 
the finite-lattice ‘magnetisation’, as defined above. We have computed these matrix 
elements to an accuracy of order 1 part in lo9. 

The first case to consider is p = 2, the Ising model, where one may compare our 
numerical answers with known exact results. We have computed the finite-lattice 
‘magnetisations’ for a sequence of lattice sizes M = 1,2,  . . . , 13. Below the critical 
point, it is found that the finite-lattice estimates form a smooth and rapidly convergent 
sequence. An example is shown in table 1, for the coupling A-’ = 0.8. The convergence 
of the sequence has been accelerated using a Pad6 tablet, appropriate to the expected 
‘linear’ convergence (Hamer and Barber 1981b). The rightmost entry in the table 
should be compared with the exact result (Pfeuty 1970) 

A ( A )  = (i - A - * ) ~ / ~ =  0.880 111 737 at A-’ = 0.8. (7) 
It can be seen that the two figures agree within 1 part in lo8, and that the use of the 
sequence transformation table has improved the accuracy of the result by five significant 
figures. 

One may now apply finite-size scaling techniques to estimate the critical index p. 
The standard scaling assumption (Uzelac and Jullien 1981, Hamer and Barber 1981a) 
for the finite-lattice ‘magnetisation’ at the critical point A, = 1 will be 

Hence the exponent ratio p/v can be estimated as the limit of the sequence 

P M  ( E  1 = (M + E )[AM (Ac) /AM- l (Ac)  - 11, (9) 
since the scaling relation (8) implies 

for all E .  

The ‘end-shift’ E is a free parameter, introduced to check the stability and accuracy 
of the result (Hamer and Barber 1981b). The finite-lattice values A M M A C )  are listed 
for the Ising (Z,) model in the first column of table 2; and from these the sequence 
( P M ( E ) }  was computed. The convergence of this sequence was accelerated using an 

t Generated using the Vanden Broeck and Schwartz (1979) algorithm, with parameter CY = 1. 
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Table 2. Finite-lattice results for the ‘magnetisations’ AM at A = A, = 1 for the 2 2  and 2 3  

models, as a function of lattice size M. 
~ 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11  
12 
13 

AM (Z, model) 

1.000 000 000 
0.923 879 533 
0.879 652 811 
0.849 088 295 
0.825 964 093 
0.807 477 524 
0.792 141 322 
0.779 076 491 
0.767 722 363 
0.757 700 394 
0.748 743 497 
0.740 656 483 
0.733 292 558 

AM (2, model) 

1.000 000 000 
0.925 572 723 
0.881 242 391 
0.850 237 673 
0.826 608 472 
0.807 624 549 
0.791 819 587 
0.778 319 387 
0.766 562 595 
0.756 168 177 

‘alternating VBS transformation’ (Vanden Broeck and Schwartz 1979, Hamer and 
Barber 1981b), appropriate to the expected ‘logarithmic’ convergence at the critical 
point. 

The resulting estimates of p / v  are plotted against E in figure l(a). The results 
become unstable around E = -0.3, as the sequence switches between convergence 
from above and convergence from below. Choosing a value E = -1.0, well away from 
this instability, we obtain the VBS table given in table 3. From this table, and figure 
l ( a ) ,  we may conclude 

p / v  = 0.125 OOkO.000 01, (11) 
which is in excellent agreement with the exact result (Yang 1952)’ p/v =Q. The 
accuracy of our result appears to be limited by round-off error, in fact, rather than 
the finite length of the sequence (plcr(e)} .  

Next, the same techniques were applied to the Z3 or three-state Potts model. The 
‘magnetisations’ were computed for a sequence of lattice sizes A4 =1,2 , .  . . , 10, the 
latter case involving a total of 3210 high-temperature basis states. The qualitative 
behaviour of the magnetisation estimates was very similar to the Ising model case. 
Table 2, column 2, lists the finite-lattice values of &(A,).  Figure l (b)  graphs the 
variation of the P / v  estimate against E ; and table 4 contains the VBS table for the 
case E = -1.0. We conclude 

(12) 
and hence, using our previous estimate (Hamer and Barber 1981b) v-’= 
1.2000 k 0.0005, one finds 

p/v = 0.133 31 *O.OOO 03; 

p =0.111 09k0.000 05. (13) 
These results should be compared with the universality hypothesis (Alexander 

1975) that the three-state Potts model should have the same exponent as the ‘hard 
hexagon’ model solved by Baxter (1980), namely p = $ = 0.11 11 . . . . There seems 
little room for doubt that this hypothesis is correct. Conventional series analyses have 
not been accurate enough to check this conclusion: results in the ordinary Euclidean 
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Figure 1. Plot of the last VBS approximant to p / u  (obtained from the sequence P ~ E ) ) ,  

as a function of the end-shift parameter E .  (a) shows results for the Zz model; ( 6 )  is for 
the Z3 model. 

framework, reviewed by Wu (1982), have ranged between 0.106 and 0.109 for p, 
while in the Hamiltonian field theory version, a result /3 = 0.108zt 0.002 was obtained 
(Hamer and Kogut 1980). But recently these magnetisation series have been re-ana- 
lysed by Adler and Privman (1982) using a method that explicitly accounts for the 
effect of confluent corrections to scaling. They obtain greatly improved estimates, 
namely 

/3 =0.1110*0.0007 (Euclidean statistical mechanics) 

/3 =0.1111*0.0006 (Hamiltonian field theory). 
(14) 

These results are in excellent agreement with ours. 
In summary, then, we have studied a method due to Yang (1952) and Uzelac 

(1980) of estimating spontaneous magnetisations from matrix elements of the magnetic 
field operator on a finite lattice. The method has been demonstrated for the case of 
the Ising (Z,) model in (1 + 1) dimensions, and has been found to provide a smooth 
and rapidly convergent finite-lattice sequence. This allows estimates of the magnetisa- 
tion and its critical index of excellent accuracy. Applied to the three-state Potts (Z,) 
model, the method yields critical exponent estimates p / v  = 0.133 31 *O.OOO 03, /3 = 
0.11 1 09 f 0.000 05. These are in excellent agreement with the series results of Adler 
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Table 4. Alternating VBS approximants to p / u  for the Z3 model. The left-hand column 
lists successive values of the sequence - p M ( e ) ,  at E = -1.0, for lattice sizes M = 
2,3, .  . . , l o .  

M 

2 
3 
4 
5 
6 
7 
8 
9 

10 

0.074 427 277 
0.095 790057 0.113 755 978 
0.105 548 885 0.118 779 418 0.133 914 174 
0.111 165 157 0.121 714356 0.133 502485 0.133 349032 
0.114 830201 0.123 636 148 0.133 390 699 0.133 323 529 0.133 310 712 
0.117 418 142 0.124 994 063 0.133 348 741 0.133 315 960 
0.119 347 136 0.126 006092 0.133 330 338 
0.120 842 847 0.126790 516 
0.122 038 002 

and Privman (1982), and provide confirmation for Alexander’s hypothesis of univer- 
sality with the hard hexagon model; they also confirm the universality between the 
ordinary statistical mechanics version and the Hamiltonian field theory version of the 
model. We may note that no special allowance was necessary for confluent corrections 
to scaling in the finite-lattice method: such corrections will merely alter the rate of 
‘logarithmic’ convergence at the critical point (Hamer and Barber 1981b). 

It should be possible to generalise this method in order to obtain the order 
parameter or latent heat at any first-order transition point. This will depend, however, 
on a correct identification of the finite-lattice eigenstates which become degenerate 
in the bulk limit, which is not always an entirely trivial problem. 

I would like to thank Dr Alan Irvingfor some illuminating discussions of the correspon- 
dence between the high-temperature and low-temperature representations on a finite 
lattice. 
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